Does the mismatch match the penumbra? Magnetic resonance imaging and positron emission tomography in early ischemic stroke.

نویسندگان

  • Jan Sobesky
  • Olivier Zaro Weber
  • Fritz-Georg Lehnhardt
  • Volker Hesselmann
  • Michael Neveling
  • Andreas Jacobs
  • Wolf-Dieter Heiss
چکیده

BACKGROUND AND PURPOSE In ischemic stroke, diffusion-weighted (DW) and perfusion-weighted (PW) magnet resonance imaging (MRI) is used to define the mismatch as the therapeutic target. With positron emission tomography (PET), we characterized the metabolic patterns of tissue compartments identified by MRI and compared the volumes of mismatch to those of PET-defined penumbra. METHODS In 6 acute (median, 5.2 hours) and 7 chronic (median, 10 days) stroke patients in whom a mismatch was defined by PW/DW MRI, PET was performed (median, 120-minute delay). Cerebral blood flow (CBF), oxygen metabolism (CMRO2), and oxygen extraction fraction (OEF) was determined in the areas of DWI lesion, mismatch, and oligemia. Then, the mismatch volume was compared with the volume of penumbra. RESULTS DWI lesions showed impaired tissue integrity (low CMRO2 and low OEF). Mismatch areas were viable (normal CMRO2) but showed largely varying OEF. Oligemic areas had metabolic patterns comparable to normal tissue. A mismatch volume was found in all 13 patients. However, only 8 of 13 had a corresponding penumbra volume that covered only a part of the mismatch. CONCLUSIONS Our comparative PET/MRI study confirmed the current pathophysiological hypothesis for the DWI lesion and for the oligemic areas. However, the mismatch area did not reliably detect elevated OEF and overestimated the penumbra defined by PET.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial-temporal MRI Responses of Stroke Rats to Oxygen Challenge

INTRODUCTION Therapy in acute ischemic stroke can only be effective as long as potentially salvageable tissue is present within the brain area affected by the blood flow disturbance. Therefore, the identification of the penumbra and the distinction of this potentially reversible condition from irreversibly damaged tissue are of utmost importance for the initiation of treatment strategies. Irrev...

متن کامل

Beyond mismatch: evolving paradigms in imaging the ischemic penumbra with multimodal magnetic resonance imaging.

BACKGROUND The ability to quickly and efficiently identify the ischemic penumbra in the acute stroke clinical setting is an important goal for stroke researchers and clinicians. Early and accurate identification of potentially salvageable versus irreversibly infarcted brain tissue may enable selection of the most appropriate candidates for early stroke therapies and identify patients who may st...

متن کامل

Defining the ischemic penumbra using magnetic resonance oxygen metabolic index.

BACKGROUND AND PURPOSE Penumbral biomarkers promise to individualize treatment windows in acute ischemic stroke. We used a novel magnetic resonance imaging approach that measures oxygen metabolic index (OMI), a parameter closely related to positron emission tomography-derived cerebral metabolic rate of oxygen utilization (CMRO2), to derive a pair of ischemic thresholds: (1) an irreversible-inju...

متن کامل

The concept of ischemic penumbra in acute stroke and therapeutic opportunities.

Ischemic penumbra was first defined by Astrup in 1981 as perfused brain tissue at a level within the thresholds of functional impairment and morphological integrity, which has the capacity to recover if perfusion is improved. It exists, even for a short period of time in the center of ischemia, from which irreversible necrosis propagates to the neighboring tissues over time. Penumbra has become...

متن کامل

Calculation of Positron Distribution in the Presence of a Uniform Magnetic Field for the Improvement of Positron Emission Tomography (PET) Imaging Using GEANT4 Toolkit

Introduction Range and diffusion of positron-emitting radiopharmaceuticals are important parameters for image resolution in positron emission tomography (PET). In this study, GEANT4 toolkit was applied to study positron diffusion in soft tissues with and without a magnetic field for six commonly used isotopes in PET imaging including 11C, 13N, 15O, 18F, 68Ga, and 82Rb. Materials and Methods GEA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Stroke

دوره 36 5  شماره 

صفحات  -

تاریخ انتشار 2005